HHO – Catalysts

Banyak sekali debat untuk masalah katalis pada fuel cell HHO.
Biasanya orang menggunakan KOH, NaOH atau Backing Soda. Dipasaran, akan lebih mudah menemukan backing soda alias soda kue.

kodok merah

Dari sekian banyak diskusi juga dari hasil membaca buku-buku referensi yang saya miliki, semua praktisi HHO selalu menganjurkan untuk menambahkan katalis dengan cara bertahap, dimulai dengan tanpa katalis, kemudian ditambahkan sedikit demi sedikit hingga nilai ampere yang di harapkan tercapai.
Penambahan katalis ini sebenarnya bagus, tidak perlu khawatir yang kata orang akan merusak karena sifat korosinya, sama sekali tidak, hanya dengan jumlah yang sangaaaaat kecil dan langsung terbuang ke outer manifold. Coba bayangkan, methanol banyak digunakan oleh para pembalap nasional maupun international, sebagai bahan bakar mesin kuda tunggangan nya, padahal methanol ini super corrotion sifatnya, tapi karena langsung di bakar dan dibuang, it is OK 🙂 no impact fr Your car machine 🙂

Dan ada baiknya Anda membaca semua link yang ada di bawah ini;

Backing soda : sodium bicarbonate atau sodium hydrogen carbonate adalah sebuah chemical compound dengan formula NaHCO3. Diatas 60 derajat celcius backing soda berangsur angsur terdecompress menjadi sodium carbonate, water & carbon dioxide.

Powered by ScribeFire.


Rate of HHO Gas & Influence Factor

Beberapa faktor yang mempengaruhi besar kecil nya hydroxy gas terproduksi serta diagram PWM ex. stan meyer, ini hanya refference saja karena ada desakan dari teman-teman untuk di post kan disini, soalnya kalau disuruh kirim email attachment, koneksi ane yang cuman pake IM2 lemot nya bene bener lemot mot mot, suseh kirim nya gagal molo.


The rate of hydroxy gas production depends on a number of factors:

  1. The liquid used for electrolysis. If distilled water is used, then almost no current will flow through the cell as
    distilled water has a very high resistance to current flow, and almost no gas will be produced. It is normal
  2. practice to add some other substance to the water to increase the rate of gas production. If salt is added to the water, the rate of electrolysis increases enormously. However, that is not a good choice of additive as the salt forms a corrosive mixture and Chlorine gas is produced along with the Hydrogen and Oxygen gasses. The same goes for battery acid; it does work but it is a very poor choice which causes practical problems over a period of time. Other additives will create the increase in gas production but have similar undesirable effects. Two additives stand out as being the best choices. The first is Sodium Hydroxide (chemical symbol NaOH), sometimes called ‘lye’. The very best choice is Potassium Hydroxide (chemical symbol KOH) which is available in pellet form. Potassium Hydroxide acts as a catalyst in the process of electrolysis in that it promotes the gas production but does not get used up in the process.
  3. The spacing of the electrode plates. The closer together the plates are placed, the greater the rate of gas production. There is a practical limit to this, as bubbles of gas formed between the plates have to be able
    to escape and rise to the surface. The optimum spacing is generally considered to be 3 mm or 1/8 inch, although some people prefer to have a 5 mm gap between the plates. These plates are typically made from 316 grade stainless steel.
  4. The area of the electrode plates and the preparation of the plate surface. The greater the plate area, the greater the rate of gas production. Some of this effect may be due to the improvement in the chances of bubbles escaping from the plates and not blocking some of the plate area. It is recommended that each face of every electrode plate has an area of between two and four square inches (13 and 25 square centimetres) per amp of current flowing through the cell. The preparation of the surface of the plates has a major effect on the rate of gas production. A major improvement is achieved if both sides of each plate are sanded in a criss-cross pattern (this produces an increased surface area with thousands of microscopic peaks which help bubbles form and leave the plate). The plates are then assembled and immersed in the electrolyte solution for about three days. This creates a protective white coating on the surface of the plates which helps enhance the electrolysis. The
    plates are then rinsed off with distilled water and the cell is refilled with a fresh solution of electrolyte.
  5. The current flowing through the cell. This is an absolutely key factor in gas production, and one of the most difficult to control accurately and economically. The greater the current, the greater the rate of gas production. The current is controlled by the concentration of Potassium Hydroxide in the electrolyte (water plus KOH) and the voltage across the cell. The voltage across the cell has limited effect as it reaches a maximum at just 1.24 volts. Up to that point, an increase in voltage causes an increase in gas production rate. Once the voltage gets over 1.24 volts, increasing it further produces no further increase in the rate of gas production. If the voltage is increased above 1.24 volts, the extra voltage goes to heat the electrolyte. Assume that the current through the cell is 10 amps. In that case, the power used to produce gas is 10 amps x 1.24 volts = 12.4 watts. When the engine is running, the voltage at the battery terminals will be about 13.8 volts as the alternator provides the extra voltage to drive current into the battery. The excess voltage applied to the cell is about 1.24 less than that, say 12.5 volts. The power which heats the electrolyte is about 12.5 volts x 10 amps = 125 watts. That is ten times the power being used to produce gas. This is very, very inefficient.
  6. The following diagram may help you understand the situation:The best electrode material for the plates is 316L-grade stainless steel. It is hard to believe, but there is a voltage drop across the plate, which makes it necessary to apply about 2 volts to the plates on each side of the cell. So, if you are running off 12 volts, then six cells in a row across the battery gives the maximum possible drive. With the engine running and providing almost 14 volts, seven cells gives the highest possible drive. The electrolyte heating up is a wholly bad thing as it drives a good deal of water vapour out of the electrolyte and this mixes with the gas and is fed to the engine. Injecting water mist, which is a fine spray of water droplets, into an engine increases its performance due to the water expanding when it is heated. This improves both the engine power and the miles per gallon, and it makes the engine run cooler, which improves the life of the engine. But water vapour is a bad thing as it is already fully expanded and just gets in the way of the hydroxy gas, diluting it and lowering the power of the engine with no benefit at all. As the voltage applied to the cell is pretty much fixed, the current flow is controlled by the concentration of Potassium Hydroxide in the electrolyte and the plate area. Once the cell is built, the plate area is fixed, so the current is adjusted by controlling the amount of KOH added to the water. There is a slight limit to this, in that the gas production increases with KOH concentration until the concentration reaches 28% (by weight). After that point, any increase in the concentration produces a reduction in the rate of gas production. General practice is to have a fairly low concentration of KOH which is found by trial. Bob Boyce, who is very experienced in this field, says that you should never add water to NaOH or KOH. Always start with water, and add the chemical to the water SLOWLY, stirring well and allowing the mixture to cool in between additions. Shelf life depends on how well it is sealed from the atmosphere. Carbon is an enemy to this process. Whether the KOH is in dry or liquid form, it will absorb carbon from CO2 in the atmosphere, or any other source of free carbon. As this happens, the catalytic effect is diminished. The more carbon is absorbed, the less the catalytic efficiency of the electrolyte. So, if you wish to maintain maximum performance, it is crucial to keep air out of your dry or liquid chemical storage containers, AND away from the electrolyte in your cells.
  7. The temperature of the electrolyte. The hotter the electrolyte, the higher the current carried through it. This can be a snag. Suppose it is decided that the current through the cell is to be 10 amps and the electrolyte concentration adjusted to give that current when the engine is started. As time passes, the 125 watts of excess power drawn from the battery, heats the electrolyte, which in turn causes an increase in the current flowing through the cell, which causes even greater heating, which….. The result is positive feedback which causes a runaway temperature effect. This effect is aggravated by the water in the cell being used up as the vehicle drives along. This raises the concentration of the electrolyte because the amount of KOH remains the same while the amount of water reduces. There are different ways of dealing with this problem. One is to reduce the concentration of KOH so that the chosen current is only reached when the electrolyte has reached its maximum working temperature. This is a simple solution with the slight disadvantage that the gas production rate when starting is lower than it could be. However, the heating power is so high that it will not be long until the cell is operating at its maximum temperature. A different way to handle the problem is to use an electronic circuit to limit the current through the cell to the chosen value by dropping the voltage applied to the cell. This has the disadvantage that the extra power is being dissipated in the electronics which then has a heat problem. Also, this solution does not improve the overall efficiency of the process. The best way of all is to reduce the voltage applied to the cell by using more than one cell connected in a daisy-chain across the battery. With two cells, each will get about seven volts across it and the gas production will be doubled. If space in the engine compartment allows, a chain of six cells can be used which means each receives about two volts and the waste powers is reduced to some 10.6 watts per cell, while the gas production is six times higher. With the higher rate of gas production, it would probably be possible to reduce the chosen current flowing through the cell. Also, with six cells, the amount of water is six times greater and so there will be less concentrating of the electrolyte due to the water being used up.
    This is a “Series-Cell” arrangement.
  8. The number of bubbles sticking to the surface of the electrode plates. This is generally considered to be a significant problem. Many methods have been used to deal with it. Some people use magnets, others pump the electrolyte around to dislodge the bubbles, others use buzzers to vibrate the plates and some pulse the voltage to the cell at just the right frequency to vibrate the cell. One of the best methods is to use the intake strokes of the engine to draw air through the cell (or cells).

Okay, than here is PWM from Stan meyer :
This electrclyser arrangement can be driven either via an a ternator or by a, electronic circuit. A 8U table circuit for the alternator arrangement is:

In this rather unusual circuit, the rotor INinding of an alternator is pulsed via an oscillator circuit »vhich has variable frequency and variable Mark/Space ratio and ……hich can be gated on and off to produce the output waveform shown below the alternator in the circuit diagram. This is the wavetcrm recommended by Stan Meyer . The oscilator circuit has a degree of supply de-coupling by the 100 ohm resister feedihg the – 100 micro farad capacitor.
This is to reduce voltage ripple corninq alorg the +12 volt supply line, caused by the current pu ses through the rotor winding.
The output arranqement feeding the pipe electrodes of the electrolyser is copied directly from Stan meyer’s circuit diagram. It is peculiar n that the positive pulses from each stator winding (shown in red in the circuit diagram) are applied to just two of the outer pipes, while the negative pulses (shown in blue n the circuit diagram are applied to all six inner tubes . It is hot obvious why Stan drew : that way, as you would expect all six outer tubes to be wired in parallel in the same way as the inner tubes are.
If the alternator does not have the winding , taken to the outside of the casing. it is necessary to open the alternator, remove the internal regulator and diodes and pull out three leads from tha ends of the stator windings . If you have an alternator which has the windings already accessible from the outside, than the stator winding connections are likely to be as shown here:

This same performance (An be produced by the solid-state circuit on its own. as shown here:

* discontinue…

#by: Patrick.

Powered by ScribeFire.

Over Heated – HHO Fuel Cell

Hari minggu kemaren saya coba hasil pemasangan HHO fuel cell yang saya pasang di mesin VW Beetle. Siang itu selesai pasang semua instrument dan fuel cell HHO, saya langsung pakai untuk naik ke Wanayasa (daerah tinggi di kota Purwakarta).

Tujuan saya adalah “Situ Wanayasa” sembari mencoba torsi VW Beetle yang telah di tambahkan injeksi gas Hydroxy.

Cuaca mendung dan akhirnya hujan tapi tidak lebat, lepas dari pasar simpang Purwakarta, VW beetle merah saya geber di gigi 3 untuk mendaki, hasilnya bagus sekali, terasa mulus dan enteng, setiap tanjakan dan tikungan di babat abissss tanpa turun ke gigi 2, malah sempat beberapa kali oper ke gigi 4.

Sampai di “Situ Wanayasa” Purwakarta kita berhenti untuk sekedar ngopi, kemudian setelah puas maem ikan bakar dan makan kecil lainya, saya dan teman saya turun kembali ke kota Purwakarta, sepanjang perjalanan semuanya lancar, hanya saja yang membuat saya khawatir dari awal perjalanan adalah tingginya Ampere di ampere meter yang saya pasang di instrument fuel cell HHO, 32 Ampere!!!
Dari awal saya sudah khawatir, apakah wadah plastik yang saya gunakan akan mampu menahan heat yang akan terjadi ??? karena terlalu panas di elemen fuel cell (panas dan tinggi nya ampere ini dikarenakan terlalu banyak KOH, tapi karena demin water sudah habis, saya coba paksakan saja, ingin tahu sampai bagaimana hasil nya).
Ternyata, sesampai kami kembali ke Purwakarta, di tengah jalan sudah mendekati rumah, fuel cell bocor karena over heated & over pressure. Keluar steam cukup banyak dan cukup membuat saya panik beberapa saat karena takut terjadi kebakaran di dalam jok mobil bagian belakang, hehehe 🙂

Alhamdulillah semua OK 🙂

Benang merah yang bisa diambil adalah :
1. Kalau mau pasang fuel cell, siapkan demin water yang cukup.
2. Mulailah dengan demin water tanpa penambahan KOH.
3. Monitoring ampere sembari menambahkan KOH sedikit demi sedikit.
4. Setelah nilai ampere naik hingga 3 Ampere, stop penambahan KOH.
5. Fuel cell sudah siap dipakai.
6. Jangan lupa pasang interlock sistem yang memadai (pasang volt meter, ampere meter, fuse 6 ampere & saklar emergency stop).

Demikian guys, sedikit pengalaman yang bisa saya share 🙂 selamat ber-experiments.

Powered by ScribeFire.

Fuel Cell HHO untuk VW Beetle 1964

Setelah check list mesin beetle sudah yakin oke, kemaren ogut mempersiapkan kembali fuel cell HHO
(hydroxy) dan water injection (wa-i) untuk si kodok kongkang 🙂

Moga moga saja pemasangan kali ini akan memberikan efisiensi pemakaian bahan bakar yang lebih baik lagi. Kalau dulu bisa dapat 1 liter = 16 KM, maka pemasangan kembali saat sekarang ini saya berharap bisa mencapai 1 liter = 25 KM atau lebih.

Fuel cell yang di generasi oleh proses elektrolisis secara umum bisa dijelaskan sebagai berikut :

Pada proses konvesional electrolisis dengan media demin water, gas hidrogen dapat terproduksi oleh karena adanya electrolyzing an acidic or alkaline aqueous solution. Overall proses yang terjadi bisa diterjemahkan seperti dibawah ini :

H2O + Electrical Energi –> H2 + 1/2 O2

Dimana energi listrik di konversi ke energi kimia menjadi gas hidrogen. Reaksi pada bagian katoda adalah sebagai berikut :

  • Katode (elektrode hidrogen)
  • 2 H2O + 2e-    –>   H2 + 2OH-
  • Anode (elektrode oxygen)
    • 2 OH   –>  1/2 O2 + H2O + 2e-

    Pada proses ini air sangat dibutuhkan dan hanya 2 elektrode yang terlibat dalam proses penguraian molekul air. Pada reaksi elektrolisa ini tidak terdapat reaksi sampingan yang merugikan (tidak bisa diterima oleh lingkungan). Jadi proses dari reaksi tersebut diatas bersih, aman (note: sesuai bidang keilmuan) dan tidak memerlukan pemisahan atau pun purifikasi product yang di hasilkan.

    Hukum pertama dari thermodinamic untuk sistem yang terbuka adalah sebagai berikut :

    • Q – Ws = dH    (r: 4)

    Dimana Q = panas yang ditambahkan pada sistem. Ws = beban sistem & dH = perubahan entalphy pada sistem. Beban yang ada pada elektolizer, Ws :

    • Ws = – n F E    (r: 5)
    • dimana :
    • n : jumlah electron yang di transfer
    • F : nilai konstanta dari Faraday = 23.074 cal/volt gm equiv dan
    • E : nilai tegangan yang di aplikasikan pada sistem.
  • Memanipulasi rumus nomor 4 & 5, kita bisa mendapatkan :
  • E = (dH – Q) : n F   (r: 6)
    • Untuk isothermal reversible proses, nilai Q bisa sebagai berikut :
  • Qrev = T dS   (r: 7)
    • T = temperature
    • dS = perubahan temperature pada sistem entropy. substitusi rumus no. 7 dengan rumus no. 6 memberikan hasil sebagai berikut (which neither hydrogen nor oxygen can be generated). :
    • Erev = (dH – T dS) : n F    (r: 8)
  • (dH – T dS) adalah peluang di dalam sistem gibbs free energy dG. dt kondisi standard ( 25 derajat celcius & 1 atm ) dH sama dengan 68.320 cal/gmole and dG sama dengan 56.690 cal/gmole. Oleh karena itu, Cell Reversible Potensial sama dengan :
    • Erev = dG : (n F)
    • = 56.690 : (2 x 23.074)
    • = 1.23 volt.
    • will be continue! *capek ogut nya*

    ## peralatan yang dibutuhkan untuk membuat fuel cell

    ## lengkap dengan difusi hidrgen

    ## fuel cell HHO yang sudah siap di pasang di VW beetle 1964

    ## fuel cell HHO di coba doloe sebelum di install

    Powered by ScribeFire.

    Tampang VW Kodok Merah

    Tampang si merah setelah ogut beresi mesin dan body nya yang di serempet sekretaris camat kotabumi – lampung utara beberapa waktu yang lalu.

    Sekarang tampangnya sudah kembali normal dengan mesin yang lebih bertenaga and dalam kondidi yang sangat prima, he3x, siap luar kota keliling jawa barat lagi negh ogut.

    Spesifikasi beetle 1964 sedan lesona red ini adalah sebagai berikut :

    * karena ogut lebih suka dengan aliran custom, maka specification nya juga full customize *

    1. Wide body, lesona red by sikens.

    2. Steering by mazda rack & pinion (sudah di modif), jadi super ringan!.

    3. Velg 16″ dengan ban 225×50 & 195×50

    4. CDI ready, tidak lagi pake platina.

    5. Gearbox VW Variant sedan (tarikan jadi enteng dan panjang).

    6. CAM sudah 100

    7. Water injection (plug & play)

    8. HHO fuel cell (plug & play)

    9. Head lamp use rossy bello

    10. back lamp use american style

    Berikut tampang si merah, oh ya, kalo ada yang minat dan mau memelihara, boleh contact saya di : 081 780 3009

    Harga tidak murah tapi juga tidak mahal, 🙂

    kodok merah dibandung

    kodok merah dibandung

    Foto diatas di ambil di depan rumah teman yang megang mesin si merah, di daerah cimahi bandung 🙂

    vw 1964 1800 cc

    vw 1964 1800 cc

    Foto diatas adalah kondisi mesin si merah setelah di bongkar service & pasang kembali 🙂

    beetle 1964 sedan 1800 cc

    beetle 1964 sedan 1800 cc

    Kalau ini foto si merah di rumah purwakarta 🙂

    Water Injection di Motor Smash

    Setelah mencoba pasang water injection di beberapa mobil dan bisa merasakan secara instant perubahan yang terjadi pada kendaraan kita, akhirnya saya ingin juga mencoba pasang water injection di motor smash milik saya, hehehe.

    Pertama kali pasang, mesin mati terus, benar-benar beda karakter nya dengan mesin mobil, mungkin karena cc motor jauh lebih kecil di banding dengan cc mobil. Pada akhirnya komposisi yang tepat dapat juga di raih, motor yang sebelumnya bisa idle dengan rata dan bagus, setelah di pasang water injection (wai) idle nya menjadi tidak rata, kadang tinggi kadang rendah, seperti motor yang kiprok nya sedang bermasalah 😀

    Hasil pengetest-an sungguh menyenangkan, pada saat suzuki smash yang masih standard, di gigi level 3 tidak pernah bisa mencapai angka 100 km/jam kalau pun bisa pastilah butuh track yang sangat panjang, pada saat test saya lakukan, smash running pada gigi level 3 dan mencapai kecepatan 100 km/jam dengan cepat (kira kira butuh jarak 200 – 300 m saja).  Untuk pemakaian bahan bakar, mestinya lebih irit dari sebelumnya, saya belum test 😀

    Berikut foto – foto pemasangan wa-i di suzuki smash milik saya :



    Foto penempatan water storage :



    Foto water inlet :